
Installation
To install the latest version of a TinyOlap:

The following code creates a dimension with 3 members. Member Subsets
Subsets are flat lists of members. Subsets are useful for
reporting purposes as well as custom aggregations. Adding
subsets does not require the dimension to be in edit mode.

Reading and Writing Data
Data access is provided through cells and data areas. Cell
access requires to define a member name for each of the
dimensions of a cube. >> pip install tinyolap

Cheat Sheet TinyOlap is an open-source, multi-dimensional, in-memory OLAP database engine written in plain Python. As an in-
process Python library, it empowers developers to build lightweight solutions for planning, forecasting, simulation,
analytics and many other numerical problems. TinyOlap is also quite handy as a more comfortable alternative to
Pandas DataFrames when data is multidimensional, requires many hierarchical aggregations or complex calculations.

https://github.com/Zeutschler/tinyolap

https://pypi.org/project/tinyolap

TinyOlap ©2022 Thomas Zeutschler ▪ web: https://tinyolap.com ▪ mail: info@tinyolap.com

To install a specific version, simply append the desired
version number. It is recommended to always upgrade to the
latest version of TinyOlap.

>> pip install tinyolap==0.8.11

Creating Databases
Create an empty in-memory database only. Database names
should not contain blanks or special characters.

from tinyolap.database import Database
create in-memory database
db = Database("tiny")

To create a persistent database, you either specify a valid
path incl. a database name (missing folders will be created
automatically) or you need to set the optional in_memory
argument to False. If no path is defined, then the database
will be saved in a folder /db/ aside the calling Python script.

from tinyolap.database import Database
create persistent databases
db1 = Database("/user/…/tiny1.db")
db2 = Database("tiny2", in_memory=False)

At any time, you can create a snapshot of an in-memory or
persistent database using the export(…) method. Again, if
no path is defined, then the folder /db/will the output dir.

db.export("/user/…/other.db") # create snapshot

Creating Dimensions
Before you can create a cube, you need to create a set of
dimensions that define the dataspace for the cube. To add
members to a dimension, you need set the dimension into
edit() mode. Then you can add or manipulate members.
Finally, you need to commit() your changes. The database
will then perform a short reorganization as a change of
dimension members may impact existing data in cubes, so
deleting a dimension member will delete all data in all cubes
related to that dimension member.

years = db.add_dimension("years")
years.edit()
years.add_member("2021")
years.add_member("2022")
years.add_member("2023")
years.commit()

You can also add a list of members using the same method.
In addition, TinyOlap supports method chaining.

regions = db.add_dimension("regions").edit()
.add_member(

["North", "South", "West", "East"]
).commit()

Member Hierarchies
Hierarchies are essential for multi-dimensional data aggrega-
tion. TinyOlap supports unbalanced as well as redundant
aggregations within one hierarchy, meaning each member
can aggregate into multiple parent members.

regions.edit().add_member(
member="NE",
children=["North", "East"])

.commit()

This is also supported for adding a list of members but
requires the children to be in separate lists or tuples. Child
members that do not exists will be created. A full example:

months = db.add_dimension("months").edit()
.add_member(

["Q1", "Q2", "Q3", "Q4"],
[("Jan", "Feb", "Mar"),
("Apr", "Mai", "Jun"),
("Jul", "Aug", "Sep"),
("Oct", "Nov", "Dec")])

.add_member(
"Year"
["Q1", "Q2", "Q3", "Q4"],

.add_member(
"Summertime"
["Jun", "Q3"],) # unbalanced & multiple

.commit()

Finally, Dimension can be converted into or created by json
using the methods to_json(…) and from_json(…).

Creating Cubes
Cubes define and span data space through a combination
on 1 to N dimensions. Cube creation is straight forward:

dim.add_subset("name", [list of members])

Member Attributes
Attributes are properties of the members in a dimension. If a
data type is defined, then setting or changing attribute values
will be type checked. Attributes are very useful for reporting,
data integration as well as custom aggregations. Adding
attributes does not require the edit mode.

dim.add_attribute("desc", str)
dim.add_attribute("date", datetime.date)
dim.add_attribute("anything")
dim.add_attribute("special", MyObject)

Reading and writing attributes can be done through the
dimension or (more convenient) the member object:

months.set_attribute("Jan", "weather", "bad")
months.add_attribute("Aug", "avg. temp", 27.3)
jan = months["Jan"]
jan["weather"] = "very bad"

cube = db.add_cube(name="data",
dimensions=["years", "months", "regions"])

Creating Rules
To define advanced business logic, TinyOlap provides the
concept of rules. Rules are normal Python functions or
(static) class methods but need to be annotated as shown.
Once defined, rules need to be registered for the cube.

@rule("data", ["2023"])
def rule_future(self, c: Cell):

return c["2022"] * 2.0

cube.register_rule(rule_future)

cube["2022", "Jan", "North"] = 123.0
cube["2022", "Feb", "East"] = 234.0
v = cube["2022", "Q1", "NE"] # will return 357.0

A more convenient way to access data is provided through
the Cell object. Comparable to cursors in a relational DB.
Cell objects can be used in mathematical operations.

c = cube.cell("2022", "Feb", "East")
c. Value = 124.0
c.value = c * 2 # will writes 248.0 to the cube

Cell objects can be easily 'bend' to point towards other cells
and used to navigate the multi-dimensional data space.

c["Mar"] = 100.0 # = c["2022", "Mar", "East"]
c["months:Mar"] = 200.0 # for ambiguous members

SQL Queries
TinyOlap has a rudimentary support for SQL dimensions,
members, attributes, subset and cubes.

sql = "SELECT * FROM data WHERE '2022'"
records = Query(db, sql).execute().records()

Data Areas
Data areas are a very powerful feature. They allow the access
and modification of areas (sub-spaces) in a cube. Otherwise,
they behave like cells and support mathematical operations.

a = cube.area() # represents the entire cube
a["2022"] *= 2.0 # all 2022 data get multiplied
print(a.max()) # will print 496.0

a["Feb"] = a["Jan"] * 3.0 # over * years/regions

clears the destination, then copies all data
a["Jan", "2022"] = a["Jun", "2021"]

To explore all capabilities of TinyOlap, please visit tinyolap.com

https://github.com/Zeutschler/tinyolap
https://pypi.org/project/tinyolap
https://tinyolap.com/
mailto:info@tinyolap.com
mailto:https://tinyolap.com

